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Conclusions and Summary
Methods

Introduction
Background
• Accurate and early diagnosis of ASD improves the quality of life of individuals with ASD 

and their families (Elder et al., 2017)

• Machine learning and computational algorithms show promise in helping diagnose 
diseases such as Alzheimer’s disease from neuroimaging datasets (Yang et al., 2018)

• Artificial neural networks learn to perform tasks through presentation of labeled 
examples and application of learning rules that change the network’s structure 

Significance
Implementation of neural networks can potentially change the way ASD is diagnosed, 
leading to faster interventions and better outcomes.

Research Question
How can neural networks be used to classify ASD and what features are important in 
performing this classification?

A. Download, Preprocess, and Split MRI Images

B. One Training Epoch

D. ASDNet Architecture

G. Visualization with 3D Gradient-
Weighted Class Activation Mapping (3D-Grad-CAM) 

A. Binary Classification Testing 
Accuracy: 0.677 ± 0.041 

1. ASDNet focuses on the total brain volume in classifying ASD, evidenced by the high 
level of attention paid to the borders of the brain, which is consistent with previous MRI 
studies in individuals with ASD (Chen et al. 2011) 

2. Behavioral assessments currently used for diagnosis of ASD can have inter-observer 
reliability as low as 55.83% (Guercio et al. 2015), lower than the current ASDNet 
classification accuracy of 67.7%

3. Combining neural network classification with current behavioral assessments could 
dramatically increase diagnostic reliability and reduce subjectivity

4. ASDNet may be a viable way to improve current behavioral assessments, assess age 
groups too young to be assessed with behavioral exams, and lower healthcare costs by 
making earlier and more accurate diagnoses
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C. Training Parameters

Number of Training 

Initial Learning Rate 

Number of LR Decays

Momentum

Batch Size

Batch Normalization 
Epsilon

Batch Normalization 
Momentum

Number of GPUs 
Used

150

1e-4

3

0.9

3

1e-5

0.997

4

E. Convolutional Layers and Feature Maps

F. Pooling Layers: Max Pooling and Average Pooling
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Conv3D Layer with 64 filters

+

Input: 128 x 128 x 128 x 1

MaxPool3D Layer

Residual Block 0
Two Conv3D Layers with 64 filters

Fully Connected Layer with 2 nodes,
Softmax

Output: Binary Classification
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Residual Block 1
Two Conv3D Layers with 64 filters

+

Residual Block 2
Two Conv3D Layers with 64 filters
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Residual Block 3
Two Conv3D Layers with 64 filters
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Residual Block 4
Two Conv3D Layers with 128 filters
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Residual Block 5
Two Conv3D Layers with 128 filters
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B. Classification Validation Accuracy During Training 

C. 3D-Grad-CAM 
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1. Download age-
 matched MRIs
2. Reduce resolution
3. Normalize

Results: Binary Classification

Results: Visualization of Residual Blocks
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Grad-CAM: After 
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