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= A Few Basic Classifiers
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LINEAR DISCRIMINANT ANALYSIS
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= Artificial Neural Networks
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OVERVIEW

= Basic Neural Network Examples




BASIC NEURAL NETWORK




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 1 PIXEL




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




BASIC NEURAL NETWORK — 2 PIXELS




OVERVIEW

= Weight Tuning/Optimization
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IN REALITY

=Best answer 1s not given

= Weights are not just -1,0, or 1

= Many more pixels/inputs

= Many more layers

= Many more nodes within each layer




REALLY WORKS

1. Set up neural network
architecture

2.

3.
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2. Initialize weights to small
values with mean O
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ERROR

=Sum of Squared Error

SSE = z(teacher — output)?




ERROR CALCULATION
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SSE = 0.765625 + 0 = 0.765625
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WEIGHT TUNING AS OPTIMIZATION
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CONVOLUTION LAYERS
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POOLING AFTER CONVOLUTION

= Functions like V1 complex cells
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POOLING AFTER CONVOLUTION

= Functions like V1 complex cells

= Shift invariance
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SKIP CONNECTIONS
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SKIP CONNECTIONS

= Similar to skip connections in brain % ; /{w"“"""prc/orc,l
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RESIDUAL BLOCK

= Stack of 2 convolution layers @




RESIDUAL BLOCK

= Stack of 2 convolution layers

= Skip connection from
beginning to end




FULLY CONNECTED LAYER

= You already know about these!




FULLY CONNECTED LAYER

= You already know about these!

= Utilize extracted features to make final
prediction




SOFTMAX
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= Chapter 2: Classification of Autism Spectrum Disorder Using Machine Learning
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» Criteria from DSM-5

= Autism Diagnostic Interview-Revised
(ADI-R)
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DIAGNOSIS

» Criteria from DSM-5

= Autism Diagnostic Interview-Revised
(ADI-R)

= Autism Diagnostic Observation
Schedule (ADOS)

= ADI-R and ADOS assess same clinical
criteria

= Reliable specificity and sensitivity for
ASD (Falkmer et al., 2013)

= ADOS has higher sensitivity than
ADI-R (Randall et al., 2018)
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EARLY DIAGNOSIS AND TREATMENT

= Current behavioral assessments require children to
be 12 months and older (Esler et al. 2015)
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EARLY DIAGNOSIS AND TREATMENT

= Current behavioral assessments require children to
be 12 months and older (Esler et al. 2015)

= Improve quality of life for individuals and families
(Elder et al., 2017)

= Estimated healthcare savings of $208,500/child
(Chasson et al., 2007)

= Substantial sustained gains in IQ, language,

academic performance, and adaptive behavior
(Myers et al., 2007)
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FUNCTIONAL DIFFERENCES IN ASD

= Majority of changes seen in ASD (Rudie et
al.,2013)
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FUNCTIONAL DIFFERENCES IN ASD

= Majority of changes seen in ASD (Rudie et
al.,2013)

= Decreased functional connectivity
throughout the brain

= Resting-state network (Cherkassky et al., 2006)

= Anterior-posterior connections (Cherkassky et
al., 2006)

= Fronto-parietal connections (Just et al., 2007)
= Within functional systems (Rudie et al., 2013)

= Interhemispheric connections (Anderson et
al.,2011)

= No deactivation of resting-state network
(Kennedy et al., 2006)
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STRUCTURAL DIFFERENCES IN ASD

= Reduced corpus callosum volume (Anderson
et al., 2011; Chen et al., 2011; Pagnozzi et al.,
2018)
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STRUCTURAL DIFFERENCES IN ASD

= Reduced corpus callosum volume (Anderson
et al., 2011; Chen et al., 2011; Pagnozzi et al.,
2018)

= Increased frontal lobe volume (Amaral et al.,
2008; Chen et al., 2011; Pagnozzi et al., 2018)

» Increased cortical thickness in frontal and
parietal lobes (Chen et al., 2011; Pagnozzi et
al.,2018)

= great heterogeneity otherwise (Amaral et al.,
2008)

"
Figure from Chen et al., 2011 O
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= Accuracy of 70% using 3-layer fully
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ASD DIAGNOSIS USING MACE
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ASD DIAGNOSIS USING MACHINE
LEARNING

= Aim 1: classify ASD from neuroimaging data using the following
classification methods:

= Nearest neighbor (NN)

= Naive-Bayes

= Linear discriminant analysis (LDA)

= Residual neural networks (RNNs)

Classifier = ASD /




ASD DIAGNOSIS USING MACHINE
LEARNING

= Aim 2. link behavioral assessments scores to neuroimaging differences
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DOWNLOAD AND PREPROCESS
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CLASSIFIERS

= NN, Naive-Bayes, LDA
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CLASSIFIERS

= NN, Naive-Bayes, LDA
= PCA to 1100 features
= 8-fold cross validation
= Ensembles

= Distance to bound analysis
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ASDNET

= 6 residual blocks

= Max pooling before
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ASDNET

= 6 residual blocks

Response Patterns: electrodes and time Partition data for cross validation

= Max pooling before Control

ASD
= Average pooling after
= Fully connected at end A‘Rls /A‘ms
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CLASSIFICATION PERFORMANCE
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