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§Sum of Squared Error

𝑆𝑆𝐸 = $ 𝑡𝑒𝑎𝑐ℎ𝑒𝑟 − 𝑜𝑢𝑡𝑝𝑢𝑡 !



Output Teacher SE

0.125 1 (1 – 0.125) ^ 2 = 0.875 ^ 2 = 
0.765625

0 0 (0 – 0)^2 = 0

SSE = 0.765625 + 0 = 0.765625
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§ Current behavioral assessments require children to 
be 12 months and older (Esler et al. 2015)

§ Improve quality of life for individuals and families 
(Elder et al., 2017)

§ Estimated healthcare savings of $208,500/child 
(Chasson et al., 2007)

§ Substantial sustained gains in IQ, language, 
academic performance, and adaptive behavior 
(Myers et al., 2007)
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§ Majority of changes seen in ASD (Rudie et 
al., 2013)

§ Decreased functional connectivity 
throughout the brain
§ Resting-state network (Cherkassky et al., 2006)
§ Anterior-posterior connections (Cherkassky et 

al., 2006)
§ Fronto-parietal connections (Just et al., 2007)
§ Within functional systems (Rudie et al., 2013)
§ Interhemispheric connections (Anderson et 

al., 2011) 

§ No deactivation of resting-state network 
(Kennedy et al., 2006)
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§ Reduced corpus callosum volume (Anderson 
et al., 2011; Chen et al., 2011; Pagnozzi et al., 
2018)

§ Increased frontal lobe volume (Amaral et al., 
2008; Chen et al., 2011; Pagnozzi et al., 2018)

§ Increased cortical thickness in frontal and 
parietal lobes (Chen et al., 2011; Pagnozzi et 
al., 2018) 

§ great heterogeneity otherwise (Amaral et al., 
2008)
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§ Aim 1: classify ASD from neuroimaging data using the following 
classification methods:

§ Nearest neighbor (NN)
§ Naïve-Bayes
§ Linear discriminant analysis (LDA)
§ Residual neural networks (RNNs)

Classifier ASD



§ Aim 2. link behavioral assessments scores to neuroimaging differences

Pictures from 
wpspublish.com and 
stoeltingco.com



§ Chapter 1: Introduction to Classification and Machine Learning
§ Classification
§ A Few Basic Classifiers
§ Artificial Neural Networks
§ Neural Network in Medical Imaging

§ Chapter 2: Classification of Autism Spectrum Disorder Using Machine Learning
§ Introduction
§ Methods
§ Results
§ Discussion
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1 Conv Layer 
of ASDNet

1 ASD MRI

Weight for each 
voxel of importance 
in ASD classification

Activation for each 
voxel

Importance of Brain Areas 
for ASD Classification


















