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Chapter 1: Introduction to Classification and Machine Learning 

 

Classification 

 Classification is a class of problems within machine learning that is concerned with 

identifying which of a set of categories a new observation belongs to. Classifiers learn to predict 

which class an observation belongs to through training with a set of observations for which the 

class of each observation is known (Kotsiantis, Zaharakis, & Pintelas, 2006). This learning is 

considered “supervised” because the classifier knows what class each observation belongs to and 

uses this knowledge to perform classification. Clustering is the corresponding “unsupervised” 

machine learning procedure; in clustering, unlabeled data is grouped into categories based on 

some measure of inherent similarity or distance (Grira, Crucianu, & Boujemaa, 2004). The set of 

observations which the classifier is trained on is referred to as the training set. Each observation 

has a set of features that define it. The performance of a classifier is evaluated using a test set, 

which contains observations that the classifier was not used to train on. The classifier’s 

classification accuracy is simply the 

number of observations the classifier 

classifies correctly in the test set 

divided by the total number of 

observations in the test set. Figure 1 

contains 200 observations from Group 

X and 200 observations from Group 

Y. Each of these observations has two 

features. These two features, which 

Figure 1. An example classification problem. The classifier would be 

trained with data from Groups X and Y to identify whether a test item is 

from Group X or Group Y based on the two features of the test item. 
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each have a numerical value, comprise the feature vector for the observation and define a point 

in two-dimensional space that represents the observation. This two-dimensional space is called 

the feature space. These ideas extend to circumstances in which each observation has many more 

features; when the observations have n features, each observation will have a n-dimensional 

feature vector that defines a point in the n-dimensional feature space that represents the 

observation. The remainder of this chapter is dedicated to various classification methods, each 

one having its own advantages and disadvantages and level of sophistication. This overview of 

classification methods is not meant to be comprehensive; rather, it serves as a basic introduction 

to the topic of classification and to the particular classifiers used in this paper for classification of 

autism spectrum disorder. 

 

K-Nearest Neighbors 

 The k-nearest neighbors (kNN) classifier is one of the simplest classification algorithms. 

There is no training required, as kNN is a type of instance-based learning (also called lazy 

learning), where all computation is 

deferred until classification of the test set. 

For each item in the test set, its Euclidean 

distance from every item in the training 

set is calculated. When k = 1, the 

algorithm is referred to as the nearest 

neighbor algorithm, as each test item is 

assigned the label of its nearest neighbor 

in the multidimensional feature space (i.e. 

Figure 2. Illustration of how the k-nearest neighbors algorithm 

works when k = 1. A zoomed-in view of the test item is shown in the 

bottom right. 
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the item that has the smallest Euclidean distance) (Zhang, 2016). In Figure 2, for example, the 

item with the smallest Euclidean distance in the two-dimensional feature space from the test item 

is an item from Group X, so the test item will be predicted to be from Group X.  When k > 1, 

there are two primary ways in which the class label can be determined: (1) majority vote and (2) 

weighting. In majority voting, the class with the most items of the k-nearest neighbors to the test 

item is the class label given to the test item. In weighting, each of the k-nearest neighbors to the 

test item is given a weight of 1/(Euclidean distance from the test item) and items from the same 

class are summed up. The class with the highest sum of weights is then the class label given to 

the test item (Coomans & Massart, 1982). Although kNN is a simple algorithm that makes no 

assumptions about the data, it can be computationally expensive when the data is complex or 

when k is large. kNN is also sensitive to irrelevant features, especially when k is small, as there 

is no training to determine which features are relevant for classification; the k-nearest neighbors 

are used to determine the classifier prediction regardless of how relevant those neighbors really 

are.   

 

Naïve-Bayes 

 The Naïve-Bayes classifier is a classification algorithm based on Bayes’ Theorem. 

Bayes’ Theorem gives the probability that event A will occur given that event B already 

occurred (denoted as P(A|B)) through the following formula:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

In the case of classification, A is the class labels and B is the features of the data. P(A|B), also 

referred to as the posterior probability, is the conditional probability of a particular class label 

given a certain set of features. Likewise, P(B|A) is the conditional probability of a certain set of 
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features given a particular class label. Finally, P(A) is the probability of the particular class label 

and P(B) is the total probability of the features. Because the value of each of the features is given 

and does not depend on the class labels, P(B) is effectively constant and ignored by the 

classification algorithm. For the Naïve-Bayes classifier, we assume that the features are 

conditionally independent, such that: 

𝑃(𝐵|𝐴) = 𝑃(𝐵1|𝐴) ∗ 𝑃(𝐵2|𝐴) ∗ … ∗ 𝑃(𝐵𝑛|𝐴) 

The assumption that the features are independent rarely is true in real-world data (hence the use 

of the term naïve), but it enables straightforward computation and often produces superior results 

to more sophisticated methods that do not assume independence (Hand & Yu, 2001; Rish, 2001). 

Researchers have posited that this unexpected discrepancy is due to the low-variance probability 

estimates that result from the intrinsic simplicity of the naïve approaches (Hand & Yu, 2001; 

Rish, 2001). The probabilities of the features given each class label (i.e. P(B1|A), P(B2|A), … , 

P(Bn|A)) are assumed to be from a Gaussian probability distribution when the features are 

continuous (John & Langley, 1995). Each feature’s mean and variance are computed across the 

training set for each class and then are used to define a Gaussian probability distribution for that 

feature given each class label. To predict the class of one test item, the Naïve-Bayes classifier 

does the following for each class label: 

1. Uses the value of each feature as the input to that feature’s Gaussian probability 

distribution for that particular class label. 

2. Takes the outputs of each feature’s probability distribution to be the conditional 

probability of that feature given the class label. 

3. Multiplies all the feature’s conditional probabilities by each other and by the probability 

of the class label, which is simply the fraction of the training set that is from that 
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particular class. The result is the posterior probability of that class label for that set of 

features (i.e. for the test item). 

When the posterior probability for all class labels given the features of the test item have been 

calculated, the class label with the highest posterior probability, which is known as the maximum 

a posteriori, is considered the predicted class of the Naïve-Bayes classifier (Herman, De Pierro, 

& Gai, 1992). Because Naïve-Bayes assume conditional independence, it is unable to incorporate 

feature interactions within the probabilistic model it uses for classification, limiting the 

information it can draw from the data to make an accurate class prediction. Despite the naïve 

assumption Naïve-Bayes classifiers make, the classifier scales well with large numbers of 

features, is simple and easy to implement, works well with small amounts of training data, and is 

not sensitive to irrelevant features like kNN is.  

 

Linear Discriminant Analysis 

 Linear Discriminant Analysis (LDA) aims to find a linear combination of features that 

separates two or more classes. In order to optimize the separation between the classes, LDA 

maximizes the ratio of the distance between the class means to the variance of the classes 

(Maroco et al., 2011). LDA makes some assumptions about the data in order to simplify the 

mathematics and make the algorithm computationally feasible (Büyüköztürk & Çokluk-

Bökeoğlu, 2008): 

1. Each feature is normally distributed across the items for each class. 

2. The variance of items across classes is the same. 

3. Items within a class are assumed to be independent.   
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Although many datasets violate one or more of these assumptions, it has been shown that LDA is 

relatively robust to slight violations of these assumptions (Lachenbruch & Goldstein, 1979). 

When each item in the dataset has 

only two features, LDA provides a line 

that best separates the two features. This 

line can then be used as the decision 

boundary for classification. In the 

example shown to the right, any test item 

determined to be above the decision 

boundary in the feature space would be 

classified as Group Y, while any test item below the decision boundary would be classified as 

Group X. Thus, the test item shown in Figure 3 would be classified as Group Y. These principles 

also apply to higher dimensional feature spaces and classification problems involving more than 

two classes.  

 In the example shown in Figure 3, the two datasets are linearly separable, meaning there 

is at least one line in the two-

dimensional feature space that fully 

separates the two classes, and all the 

assumptions made by LDA are true 

of the data. Figure 4 shows one case 

in which the data is not linearly 

separable and violates Assumption #1 

from above. Because the data is not 

Figure 3. Linear decision boundary determined by LDA from a 

linearly separable training set. 

Figure 4. Linear decision boundary determined by LDA from a training set 

that is not linearly separable. 
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linearly separable, some items from Group X are below the decision boundary and would be 

mistakenly predicted to be from Group Y by the LDA classifier, while some items from Group Y 

are above the decision boundary and would be mistakenly predicted to be from Group X. The 

test item displayed in Figure 4 is one example of an incorrect prediction made by the classifier; 

although it is from Group Y, the classifier will predict that it is from Group X because it is above 

the linear decision boundary. The effectiveness of LDA, then, is dependent on the data it uses for 

classification; LDA performs well with data that is linearly separable and can struggle with 

classification of data that is only nonlinearly separable.  

 

Artificial Neural Networks 

Artificial neural networks are a branch of machine learning involving a network of 

interconnected units called nodes that are loosely modeled after neurons in the brain (Hopfield, 

1988; Rumelhart, Hinton, & McClelland, 1986). Neural networks learn to perform tasks through 

presentation of labeled examples and application of learning rules that change the network’s 

structure (Rumelhart et al., 1986). During training, labeled examples serve as input to the neural 

network and the signal is propagated through the neural network. The error between the output of 

the neural network and the label is used to calculate modifications to the neural network’s 

weights through a process known as backpropagation. These modifications are called gradients 

and backpropagation uses the chain rule to propagate these gradients from the output of the 

neural network backwards through all the neural network’s layers. Through repeated training 

with labeled examples, the weights of the neural network become tuned so that the neural 

network can map each input (i.e. labeled example) to the correct output (i.e. label or 

classification). 
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Fully Connected Neural Networks 

The prototypical neural network is the fully connected neural network, in which each 

node in one layer is connected to every node in both the preceding and following layers. Each of 

these connections has a particular weight, which is synonymous with the synaptic strength 

between two neurons. Each node also has an activation function, which dictates how the net 

input from all the nodes in the preceding layer is mapped to the node’s activation. The simplest 

activation function is a linear activation function, where the activation of the node is set to be 

equal to the node’s net input. The rectified linear unit (ReLU) activation function, which 

performs the same as the linear activation function for positive net inputs and maps all negative 

net inputs to an activation of zero, has become increasingly popular in recent years (Nair & 

Hinton, 2010). Because of the sparse activation it causes within the neural network, use of ReLU 

activation functions ease training and improve network classification performance. Batch 

normalization operations are also commonly used in neural networks to normalize the input or 

output of a layer to have zero mean and unit variance, which helps prevent the network from 

diverging during training (Ioffe & Szegedy, 2015). When used for image classification, fully 

connected neural networks have a few major drawbacks (LeCun, Haffner, Bottou, & Bengio, 

1999). First, fully connected networks have no built-in invariance to translation, scaling, or 

rotation of the image, requiring images to be size-normalized and centered for image 

classification to be successful. Second, because the layers of the neural networks are fully 

connected, the number of trainable parameters (i.e. weights) within the network grows quickly as 

the number of pixels in the image increases. A large number of trainable parameters makes 

training computationally expensive and renders the network susceptible to overfitting, which is 

when the network overlearns the images it is trained on at the expense of generalizability. 
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Finally, the topology of the image is entirely ignored by fully connected neural networks. The 

image has to be flattened to one dimension, so its two-dimensional structure is ignored, which 

further confounds image classification.   

 

Convolutional Neural Networks 

 Convolutional neural networks (CNNs) were designed to address the difficulties faced by 

fully connected neural networks in image classification. Nodes within a CNN perform 

convolution and pooling operations that mimic the behavior of simple and complex cells in 

primary visual cortex (Fukushima, 1980; LeCun et al., 1999). Convolution operations process 

data within a local receptive field, functioning like V1 simple cells; pooling operations then 

combine the output from convolution operations together like a V1 complex cell does with the 

output from a collection of V1 simple cells. Each node serves as a feature detector within the 

local region that is its receptive field. The output of each node is referred to as a feature map and 

serves as the input for following convolutional layers. The weights of one node are shared with 

other nodes within a convolutional layer, such that the same feature detection is done at each 

portion of the image, enabling some degree of translation invariance. This weight sharing also 

reduces the number of trainable parameters substantially, making training more computationally 

efficient and mitigating the network’s susceptibility to overfitting. The convolution and pooling 

operations can be performed multi-dimensionally, enabling CNNs to account for the topology of 

images. 

 Putting convolutional layers one after another allows for increasingly complex features to 

be extracted from the image, as elementary features from early layers are combined by 

subsequent layers to detect higher-order features. Deep CNNs, in which many convolutional 
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layers are placed in series, one after another, have become state-of-the-art in image classification 

tasks (Krizhevsky, Sutskever, & Hinton, 2012; Simonyan & Zisserman, 2014; Szegedy et al., 

2014), in some cases even surpassing human level performance (He, Zhang, Ren, & Sun, 2015b). 

Various efforts have been made to visualize the activations of CNNs in order to understand how 

they perform image classification (Fong & Vedaldi, 2017; Ribeiro, Singh, & Guestrin, 2016; 

Selvaraju et al., 2017; Yang, Rangarajan, & Ranka, 2018a; Zhou, Khosla, Lapedriza, Oliva, & 

Torralba, 2016). These efforts have shown that CNNs extract rudimentary features like edges in 

earlier layers regardless of the image classification task, and extract complex features relevant to 

the image classification task in later layers (i.e. whiskers for a task involving classification of a 

cat). Because backpropagation uses the chain rule, gradients can become very small in the 

beginning layers of the neural network when the neural network is deep. As a result, deep CNNs 

are susceptible to the vanishing gradient problem, where the gradients calculated for weight 

modification become so small that the neural network can no longer be trained properly (He, 

Zhang, Ren, & Sun, 2015a). With gradients close to zero, the neural network no longer changes 

during training and cannot learn any longer, rendering it useless.  

The fundamental building block of a CNN is the convolutional layer. Convolutional 

layers transform their input by utilizing the convolution operation (see Figure 5 on the following 

page). A convolutional layer has a distinct number of filters, which serve as feature detectors, 

each filter having a particular feature it detects. Each filter is presented at local regions 

throughout the input image. At each local region, the “alignment” of the filter with the image at 

that local region is calculated. Effectively, the convolution of the image with a filter calculates 

the alignment of the filter with every local region in the image. The net result of the convolution 

operation, then, is an array of how well-aligned the filter and image are at every local region 
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within the image, as shown in Figure 5. This array is called a feature map. In a convolutional 

layer, the image is convolved with each filter of the convolutional layer. The output of a 

convolution layer is a collection of feature maps, one for convolution of the input image with 

each filter.  

  In CNNs, convolutional layers are often either preceded or immediately followed by 

pooling operations. Pooling operations reduce the spatial size of the network, simplifying the 

network’s activations.  There are two primary types of pooling operations used in neural network 

architectures: max pooling and average pooling (see Figure 6 on the following page). In max 

pooling, the maximum value of each pool is the value taken by the unit representing the pool in 

the output of the pooling operation. Max pooling is generally used at the beginning of a CNN 

because it extracts the most highly active areas of the input image, eliminating unnecessary, 

Figure 5. Convolutional Layers and Filters 
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insignificant data from the image and reducing the input down to what is essential. By contrast, 

in average pooling, the average of the values within a pool serves as the activation for the unit 

representing the pool in the output of the pooling operation. Average pooling is often done at the 

end of a CNN because it helps to reduce the spatial size of the networks while taking all the    

values within the pool into account. The benefits of pooling are two-fold. First, the smaller 

spatial size lessens the number of computations required by subsequent layers. Second, the 

reduction in the number of parameters within the neural network makes the network less prone to 

overfitting.  

 

Residual Neural Networks 

 Inspired by skip connections within the brain, residual neural networks are a variants of 

CNNs that have shortcut connections from the beginning of a convolutional layer to the end of a 

convolutional layer (He et al., 2015a; He, Zhang, Ren, & Sun, 2016).  These shortcut 

connections can involve skipping of multiple convolutional layers, in which case all the layers in 

between the beginning and end of the shortcut connection are called a residual block (see Figure 

7 on the following page). In the simplest case, the  shortcut connections are an identity mapping, 

such that the input to a convolutional layer is just added to the output of that convolutional layer. 

Figure 6. Pooling Operations 



 14 

Because the identity mapping cannot be 

changed during training, the only portion 

of the neural network being modified is 

the convolutional layer. Training, then, is 

only optimizing a residual portion of the network, hence the name residual neural networks. 

Importantly, the shortcut connections alleviate many of the issues faced by deep CNNs, such as 

the vanishing gradient problem (He et al., 2015a), by allowing important features from early 

layers to be passed directly to later layers without having to be maintained through convolutional 

layers, reducing the effective depth of the network while still enabling further feature extraction 

with convolutional layers. Visualization techniques that are used for CNNs can also be used with 

residual neural networks (Yang, Rangarajan, & Ranka, 2018b). The residual neural networks 

constructed in this paper utilize convolutional layers and pooling operations together with 

residual skip connections to extract high-level features from the input MRI images and classify a 

complex disorder. 

 

Neural Networks in Medical Imaging 

 Convolutional neural networks (CNNs) have been used in medical imaging applications 

since the 1990s in areas such as lung structure and nodule detection and breast tissue 

classification, although computational limitations and a lack of labeled training data stymied 

deep CNNs from being utilized (Bernal et al., 2017). Deep CNNs are now used for a host of 

medical imaging problems (see Table 1 on the following page) and are utilized widely in brain 

MRI for lesion detection and segmentation, as well as tumor segmentation (Bernal et al., 2017; 

Pereira, Pinto, Alves, & Silva, 2016). 3D CNN architectures have the potential to fully leverage 

Figure 7. Example of a Residual Block 
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the topology of 3D volumes like structural MRI. However, because of both ease and 

computational considerations, most of the medical imaging applications of CNNs use two-

dimensional slices of the brain as input, utilizing the well-developed 2D CNN architectures used 

for natural image classification. Those medical imaging applications that do utilize 3D CNNs 

usually extract portions of the MRI for use as input to the CNN. While 3D CNN architectures are 

more computationally expensive than 2D architectures, recent advances in computational power 

have enabled usage of whole brain MRIs as input to a 3D CNN that predicts Alzheimer’s disease 

(Payan & Montana, 2015; Yang et al., 2018b). In fact, 3D convolutional architectures have 

outperformed 2D convolution architectures in patch-based segmentation using the ADNI 

hippocampus MRI dataset (Lai, 2015). Fortunately, the visualization techniques used for 2D 

CNNs have also been extended to 3D CNNs and have been used to show that the cerebral cortex 

and lateral ventricle, two areas believed to be important for Alzheimer’s disease diagnosis by 

physicians, were particularly important for the CNN’s correct classification of Alzheimer’s 

disease (Yang et al., 2018b).  

 

Table 1. Medical Imaging Applications of Neural Networks 

Disease Accuracy Architecture Study 

Interstitial lung diseases 85.5% 2D CNN (Anthimopoulos, Christodoulidis, 

Ebner, Christe, & Mougiakakou, 

2016) 

Alzheimer’s disease 79.4% 3D CNN (Yang et al., 2018b) 

Myocardial infarction 93.53% 2D CNN (Acharya, Fujita, Oh, et al., 2017) 

Seizures 88.67% 2D CNN (Acharya, Oh, Hagiwara, Tan, & 

Adeli, 2018) 

Coronary Artery Disease 94.95% 2D CNN (Acharya, Fujita, Lih, et al., 2017) 

Parkinson’s disease 88.25% 2D CNN (Oh et al., 2018) 

Brain tumor 86.5% 2D CNN (Havaei et al., 2017) 

Thyroid disease 89.29% Fully connected neural 

network with multiple layers 

(Ozyilmaz & Yildirim, 2002) 

Heart disease 89.01% Ensemble of multi-layered 

fully connected neural 

networks 

(Das, Turkoglu, & Sengur, 2009) 

 



 16 

Chapter 2: Classification of Autism Spectrum Disorder Using Machine Learning 

 

Abstract 

 Machine learning and deep neural networks have begun to show promise in helping to 

diagnose diseases such as Alzheimer’s disease from neuroimaging datasets. Given the utility 

machine learning has already shown in diagnosing diseases, here we aim to develop machine 

learning classifiers, including a deep residual neural network called ASDNet, that can classify 

autism spectrum disorder (ASD) from neuroimaging data. Because early diagnosis and early 

treatment can improve quality of life for individuals with ASD and their families and current 

diagnostic measures can only be used with children 12 months and older, machine learning 

shows promise for enabling earlier diagnosis and treatment of ASD. We trained linear 

discriminant analysis (LDA), Naïve-Bayes, and nearest neighbor classifiers, as well as ASDNet, 

on structural MRI, cortical thickness, and functional MRI volumes, achieving classification 

accuracies of 55%, 60%, and 59%, respectively. Ensembles from multiple imaging types 

improved classification accuracy above that achieved from use of a single imaging type, 

indicating that examination of differences between ASD and typically developed controls in 

multiple imaging types is important for effective classification. LDA was the most effective 

classifier across imaging types, although there is reason to believe that ASDNet’s classification 

performance could be much improved with validation of its implementation and effective 

selection of the parameters that dictate how it is trained. Finally, distance to bound analysis 

showed that structural, cortical thickness, and functional differences in ASD extracted by the 

classifier are linked to metrics from behavioral assessments of ASD like the Autism Diagnostic 

Observation Schedule (ADOS).  
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Introduction 

Autism spectrum disorder (ASD) is a developmental disorder characterized by early-

emerging social and communication impairments along with rigid and repetitive patterns of 

behavior and interest (Frith & Happé, 2005). Manifestation of social impairments and rigid, 

repetitive behavior varies greatly with age and ability. Currently, pediatricians and psychiatrists 

diagnose autism spectrum disorders (ASD) using clinical criteria from the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-5). The accepted gold-standard diagnostic 

assessments for these clinical criteria are the Autism Diagnostic Observation Schedule (ADOS) 

(Lord et al., 2000) and the Autism Diagnostic Interview-Revised (ADI-R) (Lord, Rutter, & 

Couteur, 1994). ADOS is a semi-structured, clinician-administered interview that assesses a 

variety of characteristics specific to ASD: verbal and non-verbal communication, reciprocal 

interaction, and conversational ability, while the ADI-R is a standardized, semi-structured, 

investigator-based interview for caregivers of autistic individuals. Both tools assess the same 

clinical criteria and show reliable specificity and sensitivity for ASD (Falkmer, Anderson, 

Falkmer, & Horlin, 2013), although ADOS does have a higher sensitivity than ADI-R (Randall 

et al., 2018). Joint administration of ADOS and ADI-R was no more accurate than use of ADOS 

alone (Randall et al., 2018). Because the ways in which one can test for the deficits found in 

ASD vary based on an individual’s capabilities, there are separate ADOS modules based on age, 

language, and developmental level (Brentani et al., 2013). The Toddler Module of ADOS-2 has 

demonstrated 97% inter-rater reliability as well as 91% sensitivity and 91% specificity in 

diagnostic classification of ASD for children as young as 12 months (Esler, Amy N; Bal, 

Vanessa H; Guthrie, Whitney; Weismer, Susan E; Lord, 2015; Luyster et al., 2009).  
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Studies have shown that accurate and early diagnosis and treatment of ASD is critical in 

improving not just the quality of life of individuals with ASD, but also those of their families 

(Elder, Kreider, Brasher, & Ansell, 2017). Beyond the quality of life enhancement that early 

diagnosis and treatment provides, it has been estimated that early diagnosis and intervention 

provide a healthcare savings of $208,500 per child (Chasson, Harris, & Neely, 2007). Children 

who receive early intensive behavioral treatment have been shown to make substantial, sustained 

gains in IQ, language, academic performance, and adaptive behavior, and their outcomes have 

been significantly better than those of children in control groups (Myers & Johnson, 2007). 

Given the importance of early diagnosis and the fact that current diagnostic tools (e.g. ADOS) 

cannot be used with children younger than 12 months, it is critical that other diagnostic tools be 

developed.  

 Interventions can be started soon after 

diagnosis of ASD. Myers & Johnson (2007) 

consider there to be seven important principles 

of effective early childhood intervention for 

children with ASD (see Table 2). There are 

various methods that can be used with children 

with ASD to address the above principles. 

Applied behavior analysis (ABA) is based on 

findings from experimental psychology 

research used to increase and maintain 

desirable adaptive behaviors, reduce 

interfering maladaptive behaviors, teach new 

1. Active engagement of the child at least 25 hours per 

week, 12 months per year, in planned, developmentally 

appropriate educational activities designed to address 

identified objectives 

 

2. Low student-to-teacher ratio 

 

3. Inclusion of parent training 

 

4. Promotion of interaction with typically developing 

peers 

 

5. Ongoing measurement and documentation allowing 

for adjustments to program when necessary 

 

6. Incorporation of a high degree of structure 

 

7. Use of assessment-based curricula that address 

communication and social skills, functional skills that 

prepare child for increased responsibility and 

independence, disruptive or maladaptive behavior, 

cognitive skills, and traditional readiness skills and 

academic skills 

 

Table 2. Principles of Effective Early Childhood 

Invention for ASD 
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skills, and generalize behaviors to new environments or situations (Myers & Johnson, 2007). 

While interventions for ASD are usually focused on early childhood, there is empirical support 

for use of certain educational strategies, particularly those that are based on ABA, across all age 

groups for individuals with ASD (Myers & Johnson, 2007). ASD interventions are assessed 

through evaluation of the individuals progress in (1) improving his/her communication and social 

skills, cognitive skills, and traditional readiness and academic skills, (2) eliminating or reducing 

maladaptive or disruptive behavior, and (3) cultivating functional skills that enable the individual 

to handle increased responsibility and independence. Usually this assessment is done by 

pediatricians or psychiatrists as a person progresses through interventions.  

At this point, ASD is diagnosed solely through behavioral testing using assessment tools 

like ADOS and ADI-R. Decisions about neuroimaging in children with A SD are made on a 

case-by-case basis and yield of MR I is low in children with ASD and no other neurologic 

findings (Battaglia & Carey, 2006; Cooper et al., 2016). While some efforts have been made to 

use neuroimaging to aid in diagnoses by examining for changes in brain network organization 

(Chen, Jiao, & Herskovits H., 2011), the success of these efforts is largely dependent on experts 

to manually delineate brain areas. Neuroimaging studies increasingly support a picture of early 

atypical brain development and widespread alterations in functional and structural connectivity 

throughout the brain in individuals with ASD that is thought to occur because of abnormal 

synaptic pruning and neural apoptosis (Muhle, Reed, Stratigos, & Veenstra-VanderWeele, 2018). 

The fact that a majority of the mutated genes converge on specific biological pathways that 

influence synaptic plasticity and connectivity at different levels further supports this theory of 

atypical development caused by abnormal synapse pruning (Bourgeron, 2015). Recent 

neuroimaging studies with high-risk infants have suggested that infants who will later develop 
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ASD already exhibit abnormal connectivity, particularly in regions involved in low-level sensory 

processing, at six months of age (Emerson et al., 2017; Lewis et al., 2017; Wolff, Jacob, & 

Elison, 2018; Wolff et al., 2012). Starting between the ages of six and 12 months, children who 

will eventually be diagnosed with ASD show increased cortical surface area, starting in sensory 

domains underlying auditory and visual processing, followed by more global overgrowth 

throughout the brain from the ages of 12 to 24 months (Hazlett et al., 2017; Shen et al., 2013). 

From the ages of 2 to 4 years, children with ASD continue to exhibit enlarged brain volumes 

compared with those of their peers (Courchesne, Campbell, & Solso, 2011; Redcay & 

Courchesne, 2005; Chen et al., 2011). Brain volumes of typically developing children converge 

with those in children with ASD by school age (Courchesne et al., 2011; Redcay & Courchesne, 

2005), although children with ASD continue to have increased amygdala volumes until 

adolescence (Amaral, Schumann, & Nordahl, 2008; Chen et al., 2011).  

While there is a great heterogeneity in both the functional and structural differences in 

ASD (Chen et al., 2011; Lenroot & Yeung, 2013), fMRI has shown that functional 

underconnectivity throughout the brain appears to be a universal characteristic of the brain in 

ASD (Williams, 2007). Different studies have found a variety of brain areas to be functionally 

under-connected in ASD, as shown in Table 3 on the following page. While the brain, as a  

whole, exhibits functional underconnectivity in ASD, there are regions are the brain that do show 

increased functional connectivity. For example, resting-state functional magnetic resonance 

imaging (fMRI) analysis performed in individuals with ASD found both a hypoconnectivity of 

long cortical-cortical and interhemispheric projections and a hyperconnectivity of local 

connections in subcortical regions compared with age-matched, typically developing controls 

(Di Martino et al., 2014). Similarly, children and adolescents with ASD display reduced short  
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Table 3. Functional Differences Between ASD and TDA 

Brain 

Areas/Networks 

Finding Resting state or 

task-

dependent? 

Study 

Ventral medial 

prefrontal cortex 

 

Reduced activity in judgment and 

resting conditions 

Both (Kennedy & Courchesne, 

2008a) 

Ventral medial 

prefrontal cortex 

Reduced activity in judgment and 

resting conditions 

 

Activity correlated with clinical 

measure of social impairment 

 

Both 

 

 

Resting state 

 

(Kennedy & Courchesne, 

2008a) 

 

(Kennedy, Redcay, & 

Courchesne, 2006) 

Resting-state 

network 

Functional underconnectivity 

 

 

No deactivation during cognitively 

demanding tasks 

 

Altered functional organization 

 

Resting state 

 

 

Task-dependent 

 

 

Resting state 

 

(Cherkassky, Kana, 

Keller, & Just, 2006) 

 

(Kennedy et al., 2006) 

 

 

(Kennedy & Courchesne, 

2008b) 

 

Anterior-posterior 

connections 

 

Functional underconnectivity Resting state (Cherkassky et al., 2006) 

 

Fronto-parietal 

connections 

Connectivity was correlated with size 

of corpus callosum in ASD group only 

 

Lower functional connectivity 

Task-dependent 

 

 

Task-dependent 

 

(Just, Cherkassky, Keller, 

Kana, & Minshew, 2007) 

 

(Just et al., 2007) 

 

Ventral 

occipitotemporal 

regions 

 

More activation during local processing 

and visual search 

Task-dependent (Ring et al., 1999) 

Prefrontal cortical 

areas 

Less activation during local processing 

and visual search 

 

Task-dependent (Ring et al., 1999) 

Global functional 

connectivity 

Reduced in adolescents and adults with 

ASD 

 

Increased in younger children with 

ASD 

 

Reduced connectivity within functional 

systems 

 

Stronger connectivity between 

functional systems  

 

Resting state 

 

 

Resting state 

 

 

Resting state 

 

 

Resting state 

(Uddin, Supekar, & 

Menon, 2013) 

 

(Uddin et al., 2013) 

 

 

(Rudie et al., 2013) 

 

 

(Rudie et al., 2013) 

 

Interhemispheric 

connections 

 

Functional underconnectivity Resting state (Anderson et al., 2011) 
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and long-range connectivity within functional systems and stronger connectivity between 

functional systems, particularly in default and higher-order visual regions (Rudie et al., 2013). In 

addition to the differences in functional connectivity seen in ASD, there have been notable 

functional activation differences in specific areas in ASD and control groups. In resting state 

fMRI, researchers found that the ASD group had altered functional organization of the resting-

state network, which is also referred to as the default mode network (Kennedy & Courchesne, 

2008b). The resting-state network is most active when a person is not engaged in a particular 

task and becomes inactive when a person re-engages with the outside world. Individuals with 

ASD do not show the same deactivation of the resting-state network that typical controls do, and 

this lack of deactivation is thought to underlie the lack of social engagement that characterizes 

the disorder (Kennedy et al., 2006). These differences in functional connectivity and functional 

activation both explain the deficits seen in ASD and provide rationale for use of functional data 

in classification of the disorder. 

Although functional differences comprise the majority of the differences found between 

ASD and typical controls (Rudie et al., 2013), researchers have consistently found that 

individuals with ASD have reduced corpus callosum volume (Anderson et al., 2011; Chen et al., 

2011; Pagnozzi, Conti, Calderoni, Fripp, & Rose, 2018) and increased frontal lobe volumes  

(Brambilla et al., 2003; Chen et al., 2011; Pagnozzi et al., 2018). Beyond these two consistent 

findings, there is great heterogeneity in the structural differences observed in ASD (Amaral et 

al., 2008), as shown in Table 4 on the following page. Beyond the varied brain areas reported to 

be structurally different in ASD, there are multiple studies that directly contradict one another. 

For example, the cerebellum has been observed to have reduced volume in ASD compared to 

typical controls (Fatemi et al., 2012; Pagnozzi et al., 2018; Toal et al., 2010), while it has also  
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Table 4. Functional Differences Between ASD and TDA 

Brain Area Finding Study 

Corpus callosum Reduced volume 

 

(Anderson et al., 2011; Chen et al., 2011; 

Pagnozzi et al., 2018) 

 

Whole brain 

 

Increased surface area and increased 

cortical gyrification 

 

Increased CSF volume 

 

(Pagnozzi et al., 2018) 

 

 

(McAlonan et al., 2005; Pagnozzi et al., 

2018) 

 

Frontal lobes Increased GM volume 

 

 

 

Decreased GM density and 

abnormal growth trajectories 

 

Increased cortical thickness 

 

Increased WM volume 

 

(Amaral et al., 2008; Chen et al., 2011; 

Pagnozzi et al., 2018) 

 

(Chen et al., 2011) 

 

 

(Pagnozzi et al., 2018) 

 

(Amaral et al., 2008) 

Temporal lobes 

 

Increased GM volume 

 

 

Decreased WM volume and density 

 

Abnormal growth trajectories 

 

Decreased GM volume 

 

(Brambilla et al., 2003; Chen et al., 2011; 

Pagnozzi et al., 2018) 

 

(Chen et al., 2011) 

 

(Chen et al., 2011) 

 

(McAlonan et al., 2005; Toal et al., 2010) 

 

Parietal lobes Increased cortical thickness 

 

Decreased GM 

 

Increased volume 

(Chen et al., 2011) 

 

(McAlonan et al., 2005) 

 

(Brambilla et al., 2003) 

 

Cerebellum 

 

Reduced volume 

 

 

Increased volume 

 

Reduced WM 

(Fatemi et al., 2012; Pagnozzi et al., 2018; 

Toal et al., 2010) 

 

(Amaral et al., 2008; Brambilla et al., 2003) 

 

(McAlonan et al., 2005; Toal et al., 2010) 

 

Fronto-striatal network 

 

Reduced GM (McAlonan et al., 2005) 

 

Fusiform gyrus Reduced GM volume (Toal et al., 2010) 

Brainstem Reduced WM 

 

(Toal et al., 2010) 
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been found to have increased volume in ASD compared to typical controls (Amaral et al., 2008; 

Brambilla et al., 2003). While some of the variance in reported structural differences may be due 

to small numbers of subjects examined within these studies, these findings reinforce the view of 

autism as a spectrum disorder, arising from a variety of structural and functional differences that 

underlie the deficits seen in ASD.  

Both the importance of earlier diagnosis of ASD and the myriad of structural and 

functional differences seen in ASD motivate development of tools for diagnosis of ASD that 

leverage neuroimaging data. Various efforts have been made to use machine learning and neural 

networks for diagnosis of ASD in recent years. Many of these machine learning approaches are 

built upon use of MR-derived features such as volume, surface, and thickness. These models 

have been able to achieve diagnostic accuracy up to 87%, although (1) the data was only from 22 

subjects with ASD and 16 controls and (2) the performance of the diagnostic model is critically 

affected by the features selected as components of the model (Chen et al., 2011; Jiao et al., 

2010). Researchers have also used a 3-layer fully connected neural network to classify ASD 

from controls using 19,900 features derived from fMRI data from 505 individuals with ASD and 

530 controls in the Autism Brain Imaging Data Exchange (ABIDE) database, achieving an 

accuracy of 70%, which is state-of-the-art for the ABIDE dataset (Heinsfeld, Franco, Craddock, 

Buchweitz, & Meneguzzi, 2018). Classification by the neural network showed an anticorrelation 

of brain function between the anterior and posterior areas of the brain, corroborating empirical 

evidence of anterior-posterior disruption in brain connectivity in ASD (Just, Cherkassky, Keller, 

& Minshew, 2004). 

Given the structural and functional differences in ASD and the importance of developing 

new diagnostic tools that will enable early diagnosis of the disorder, we aim to classify ASD 
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from structural T1-weighted brain MRI images, 3D volumes of voxel-wise cortical thickness, 

and mean functional activation volumes using the following classification methods: nearest 

neighbor (NN), Naïve Bayes, linear discriminant analysis (LDA), and residual neural networks 

(RNNs). Additionally, we aim is to correlate the distances of imaging volumes from the 

classification boundary, which is analogous to the classifier’s confidence of its prediction, to 

ADOS scores in order to demonstrate that the classifier mimics classification behavior of the 

current gold standard assessment tool for ASD. We hypothesize that the machine learning 

classifiers, as well as the residual neural network, which we call ASDNet, will be able to classify 

significantly better than chance for all three imaging types. We also hypothesize that the 

distances of imaging volumes from the classification boundary will be positively correlated with 

ADOS and ADI-R scores. Implementation of machine learning algorithms, such as neural 

networks like ASDNet, in combination with careful clinical assessments can potentially change 

the way ASD is diagnosed, paving the way for faster interventions and better outcomes. 

 

Methods 

ABIDE Preprocessed 

Autism Brain Imaging Data Exchange (ABIDE) is a collaboration of 16 international 

imaging sites that have aggregated and are openly sharing structural and resting state functional 

MRI data along with phenotypic information from 539 individuals with ASD and 573 typical 

controls (Di Martino et al., 2014). The Preprocessed Connectomes Project (PCP) has publicly 

released data from ABIDE that was preprocessed by five different teams each using their 

preferred tools, resulting in a dataset that contains the same raw data preprocessed in a multitude 

of ways. T1-weighted structural MRI images from 531 individuals with ASD and 570 typical 
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controls were downloaded from ABIDE Preprocessed. These structural MRI images were 

motion-corrected, intensity normalized, Talairach-transformed, and skull-stripped using 

FreeSurfer prior to being downloaded. The downloaded structural MRI images were reduced to a 

resolution of 64 x 64 x 64 and min-max normalized in order to make the volumes well-

conditioned for training with neural networks. Additionally, 3D volumes of voxel-wise cortical 

thickness from 531 individuals with ASD and 570 typical controls were utilized. These volumes 

come from the Advanced Normalization Tools (ANTs) cortical thickness pipeline, which uses 

multivariate template construction, image registration, bias correction, and n-tissue segmentation 

to perform automated, volume-based estimation of cortical thickness measures from structural 

MRI data (Avants et al., 2014; Tustison et al., 2014). The ANTs cortical thickness pipeline has 

good scan-rescan repeatability and demonstrated higher predictive performance than FreeSurfer 

surface-based cortical thickness estimations for thickness-based prediction of age and gender 

(Tustison et al., 2014). Following download, these volumes were first cropped to a size of 140 x 

120 x 180 in order to eliminate uninformative zeros. All the voxels removed during cropping had 

a value of zero for all volumes of voxel-wise cortical thickness. After being cropped, the 

resolution of the volumes was reduced by a factor of two, resulting in a final resolution of 70 x 

60 x 90.  The cortical thickness volumes were also min-max normalized. Finally, mean 

functional activation volumes from 529 individuals with ASD and 570 typical controls were 

used. These volumes were preprocessed using the Connectome Computation System (CCS) 

pipeline, which integrates tools from AFNI, FSL and FreeSurfer to perform comprehensive 

functional preprocessing. Following download, min-max normalization was performed on the 

mean functional activation volumes. The resolution of the volumes was not changed from their 

original resolution of 61 x 73 x 61. 
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Classifiers  

Following data preprocessing, we used the  CoSMoMVPA toolbox (Oosterhof, Connolly, 

& Haxby, 2016) to classify structural, cortical thickness, and functional MRI scans from 

individuals with ASD and typically developed controls. We first reduced the dimensionality of 

each scan to 1100 components using principal components analysis. We then used 8-fold cross 

validation separately using three classifiers: Nearest neighbor (NN), Naïve Bayes, and linear 

discriminant analysis (LDA). In this procedure, MRI scans  are randomly assigned to one of 

eight subsets. Seven of the eight  subsets (87.5% of the data) are pooled together to train the 

classifier  (NN, Naïve Bayes, LDA) and then classification accuracy is tested on the remaining 

subset (12.5% of the data). This procedure is repeated a total of eight times, such that each of the 

subsets is tested once. Classification results are reported in percent correct of classifications for 

each subset with standard error across subsets. In addition to performing this procedure for 

structural, cortical thickness, and functional scans independently, we also created ensembles of 

every combination (i.e. structural + cortical, structural + functional, etc.) of scans for each 

individual. For the ensembles, we concatenated scans together, such that ensembles with two 

scan types have 2200 components and ensembles with all three scan types have 3300 

components. 

 

Linking ADOS to classification data using distance to bound 

To link behavioral metrics from ASD behavioral assessments such as ADI-R and ADOS 

to cortical, structural, and functional differences in individuals with ASD we used a “distance to 

bound” analysis, a method that has been used in a number of psychophysics studies (Carlson, 

Ritchie, Kriegeskorte, Durvasula, & Ma, 2013; Ritchie & Carlson, 2016; Ritchie, Tovar, & 
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Carlson, 2015). In this analysis, an LDA classifier is used, and the Euclidean distance from the 

classification boundary of the MRI scan is calculated. A greater distance denotes that the item is 

more easily categorized into the ASD class type.  We then performed a spearman rank 

correlation between the distance to bound and both ADI-R and ADOS behavioral scores. 

 

ASDNet 

For each of the three imaging modalities downloaded, 

80% of the volumes were used to train a version of ASDNet 

specific to that imaging modality. These volumes were 

presented to the network in batches of three, and the network 

was modified based on the error of all three volumes 

presented within the batch. ASDNet saw each of the volumes 

172 times during training (each cycle through the training 

data is called an epoch). At the beginning of each epoch, 10% 

of the volumes (an equal number from each class) were used 

to validate how well ASDNet could generalize to data it was 

not being trained on. The remaining 10% of volumes (also 

an equal number from each class) were used at the end of 

training to test the network’s ability to classify following 

training. Five-fold cross-validation was done, resulting in 

ASDNet being trained five separate times, with no volume 

serving as part of the validation or test dataset more than  

once for each of the three imaging modalities.  Figure 8. Architecture of ASDNet 
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ASDNet utilizes the same neural network architecture as the deep 3D residual neural 

network used to diagnose Alzheimer’s disease that achieved a classification accuracy of 79.4% 

(Yang et al., 2018b). ASDNet consists of 14 layers, 13 of which are convolutional layers and one 

which is a fully connected layer. The first layer is a convolutional layer, which is followed by 

max pooling. The output from the max pooling is passed to a series of six residual blocks, each 

consisting of a shortcut connection from the start of the residual block to its end and two 

convolutional layers preceded by batch normalization and rectified linear unit (ReLU) activation. 

The output of the residual blocks is passed to an average pooling operation, and then finally to 

the fully connected layer, which classifies the structural MRI image as being either ASD or 

control. The same network architecture was used for neural network classification of T1-

weighted structural MRI images, 3D volumes of voxel-wise cortical thickness, and mean 

functional activation volumes. The complete architecture of ASDNet is shown in Figure 8 on the 

previous page. 

 

Results 

 The classification accuracy for each classifier on the structural, cortical thickness, and 

function volumes is displayed in Figure 9 on the following page. LDA had the best average 

classification accuracy across the three types of imaging out of the four classification methods, 

with ASDNet classifying structural and cortical thickness volumes with similar accuracy and 

performing worse on the functional volumes than LDA. Naïve-Bayes showed comparable 

accuracy to LDA and ASDNet on structural MRI, but had performance close to that of nearest 

neighbors for the cortical thickness and functional volumes. Putting data from two imaging types 

together into an ensemble increased classification accuracy with all three classifiers it was 
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attempted with (LDA, Naïve-Bayes, and nearest neighbors). The ensemble containing all three 

imaging types performed the best. Finally, use of cortical thickness volumes and functional 

volumes led to higher classification than use of structural MRI, although the pairwise 

combinations of imaging types as an ensemble led to similar classification accuracies for all 

three pairwise combinations.   

Tables 5 & 6 on the following page show the Spearman correlation of distance to bound 

with ADI-R and ADOS scores. Distance to bound was not significantly correlated with any of 

the ADI-R scores. The only significant correlation of distance to bound with ADOS scores found 

with a single imaging type was in the communication subscore for cortical thickness volumes.  

Distance to bound was significantly correlated with the ADOS total score and the social subscore 

for the ensemble of structural and functional volumes, while distance to bound was significantly 

correlated with the ADOS total score and each of the ADOS subscores for the ensemble of 

cortical thickness and functional MRI volumes. There was also a significant correlation of 

distance to bound with the ADOS total score and each of the subscores for ensemble of all three 

imaging types.   

Figure 9.Classification accuracy for each classifier on structural, cortical thickness, and functional volumes. 

 



 31 

Table 5. Spearman Correlation of Distance to Bound with ADI-R Scores 

Imaging 

Type 

Reciprocal 

Social 

Interaction 

Subscore 

Abnormalities in 

Communication 

Subscore 

Restricted, Repetitive, 

and Stereotyped 

Patterns of Behavior 

Subscore 

Abnormality of 

Development Evident 

at or Before 36 Months 

Subscore 

Structural -0.030824 0.00310786 0.01198704 -0.080839 

Cortical 

Thickness 

0.07179363 0.04178351 0.03704429 0.09608714 

fMRI -0.0052388 0.00160912 -0.0462776 0.02620907 

Structural + 

Cortical 

Thickness 

-0.0045388 -0.0546301 -0.0480313 -0.0462883 

Structural + 

fMRI 

0.03864535 0.05123317 -0.0201356 -0.0236276 

Cortical 

Thickness 

+fMRI 

0.05882777 0.03533393 -0.031688 -0.0017648 

Ensemble 0.05843972 0.01987662 -0.0513222 -0.0096185 

* bold denotes p < 0.05 

 

Table 6. Spearman Correlation of Distance to Bound with ADOS Scores 

Imaging 

Type 

Communication 

Total Subscore 

Social Total 

Subscore 

Stereotyped Behaviors 

and Restricted Interest 

Total Subscore 

ADOS Total Score 

Structural 0.045096734 0.096477124 0.140835223 0.070480834 

Cortical 

Thickness 

0.094878224 0.102398749 0.114871145 0.087638426 

fMRI 0.062210081 0.076896168 -0.03648645 0.075727795 

Structural + 

Cortical 

Thickness 

0.023658304 0.104344813 0.149861636 0.083697354 

Structural + 

fMRI 

0.083834291 0.124648891 0.099444885 0.113113377 

Cortical 

Thickness 

+fMRI 

0.211939743 0.239767411 0.146099473 0.234762654 

Ensemble 0.140052023 0.196146979 0.159847403 0.185239497 

* bold denotes p < 0.05 
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Discussion  

 In this study, LDA was the most effective classifier across the three types of imaging, 

achieving classification accuracies slightly better than ASDNet while taking a fraction of the 

training time and computation of ASDNet. The fact that classification accuracy was higher for 

ensembles of two imaging types than for classification with one imaging type alone suggests that 

the differences between ASD and typical controls in different imaging types can act 

synergistically to improve classification. An ensemble of multiple imaging types allows the 

classifier to leverage the differences between ASD and typical controls found in both imaging 

types, increasing its ability to separate the two groups and accurately predict which of the two 

groups a test item belongs to. This notion is further corroborated by the ensemble of all three 

imaging types achieving the highest accuracy seen in this study. The superior performance of the 

ensembles also indicates that future attempts to diagnose ASD using machine learning and 

neuroimaging data should make use of data from multiple imaging modalities, as doing so will 

allow the classifier to use a larger amount of brain differences between ASD and typically 

developed controls and achieve higher classification. The higher classification accuracy for 

cortical thickness volumes and functional volumes than for structural volumes intimates that 

there are more significant differences between ASD and typical controls in cortical thickness and 

functional MRI than in structural MRI, which is consistent with previous studies that showed 

structural differences comprise only a small subset of the neuroimaging changes found in ASD 

(Rudie et al., 2013). This is not to say that differences in structural MRI are not informative for 

classification of ASD; the ensembles showed that consideration of structural MRI in addition to 

cortical thickness and/or functional MRI effectively improved classification accuracy.  
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ASDNet did not perform as well as one would expect given the success deep neural 

networks have had in medical imaging. While the well-documented heterogeneity of structural 

and functional changes in ASD may make the problem of ASD classification more difficult than 

classification of other diseases or disorders, the fact that ASDNet did not significantly 

outperform the other classifiers indicates that something about the network is lnot functioning 

optimally. In order to determine whether ASDNet was implemented incorrectly, we created a toy 

dataset of small and large cubes with the same resolution as the structural MRI images. ASDNet 

learned how to classify the test set correctly within 20 training steps (i.e. 20 iterations of batch 

presentation followed by weight modification through backpropagation), supporting the notion 

that ASDNet was implemented correctly and suggesting that the network is capable of solving 

high-dimensional classification problems. To further demonstrate that the implementation is 

correct, ASDNet should be trained and tested on the same Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) data that was used to achieve a classification accuracy of 79.4% by Yang et al. 

(2018b). Replication of these findings would confirm that ASDNet has been implemented as 

intended.  

Another possible reason for the suboptimal performance of ASDNet is that the 

parameters that dictate how ASDNet is trained, which are called hyperparameters, are flawed. 

Deep convolutional neural networks like ASDNet have around ten to fifty hyperparameters, 

many of which are continuous values, so the number of ways in which the values of these 

hyperparameters can be permuted is huge. Given that (1) these neural networks often take hours 

or days to train and (2) the particular set of hyperparameters can drastically affect the efficacy of 

training, selection of an effective configuration of hyperparameters can be both time-consuming 

and difficult (Bergstra, Bardenet, Bengio, & Kégl, 2011).  Bayesian optimization has been shown 
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to obtain better results in fewer evaluations than other optimization algorithms like grid search 

and random search because Bayesian optimization is able to reason about the quality of a 

hyperparameter configuration before it is run (Snoek, Larochelle, & Adams, 2012). We have 

tried using Bayesian optimization to find a good set of hyperparameters and the “optimal” 

hyperparameters identified by this optimization were used to train ASDNet. Because the 

optimization algorithm uses the performance of past hyperparameter configurations to determine 

which set of hyperparameters to use next, one cannot perform more than one run at a time during 

optimization. This inability to parallelize Bayesian optimization, coupled with the fact that 

ASDNet takes two to six hours per run, severely limited both the number of runs that could be 

done within an instance of optimization and the number of hyperparameters that really could be 

optimized. Bayesian optimization of a larger number of hyperparameters for a longer amount of 

time may enable the optimization algorithm to thoroughly explore the range of possible 

hyperparameter configurations and find a truly effective set of hyperparameters.   

 The distance to bound analysis demonstrated that structural, cortical thickness, and 

functional differences extracted by the classifier for classification of ASD are linked to metrics 

from behavioral assessments. The fact that distance to bound was significantly correlated with 

ADOS scores but not with any of the ADI-R scores suggests that ADOS scores account for the 

structural, cortical thickness, and functional differences better than ADI-R, which is consistent 

with findings that ADOS is more sensitive to ASD than ADI-R (Randall et al., 2018). There was 

greater and more significant correlation of distance to bound with ADOS scores when data from 

multiple imaging types were grouped into an ensemble, reinforcing the conclusion from the 

classification accuracy results that providing the classifier with differences from multiple 

imaging types increased its ability to separate the two groups. Moreover, the significant 
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correlation of distance to bound with the ADOS total score and each of the subscores for the 

ensemble of cortical thickness and functional MRI intimates that the cortical thickness and 

functional differences in ASD may underlie the range of behavioral deficits seen in ASD that 

ADOS tests for. Additionally, the higher, more significant correlation for the ensemble of 

cortical thickness and functional MRI than for either of the ensembles involving structural MRI 

further strengthens the conclusion from the results of classifier performance that the cortical 

thickness and functional differences likely contribute more to ASD than structural differences 

do. Thus, not only did the distance to bound analysis demonstrate that brain differences in ASD 

extracted by the classifier are linked to metrics from behavioral assessments, it reinforced many 

of the conclusions drawn from the results of classifier performance. 

Furthermore, the classifiers explored in this study have the potential to enable earlier 

diagnosis and thus earlier treatment of ASD. Current behavioral assessments can be only used 

with children 12 months and older (Esler, Amy N; Bal, Vanessa H; Guthrie, Whitney; Weismer, 

Susan E; Lord, 2015), while classification of ASD using machine learning could be done in 

children under 12 months of age. A classifier that diagnoses ASD for children under 12 months 

of age would be constructed and trained in the same manner that classifiers in this study have 

been, the only major difference being that the classifier would need to be trained and tested on 

neuroimaging scans from children under 12 months of age. Such classifiers would make early 

diagnosis and early intervention more feasible and provide immediate health benefits. Thus, this 

study demonstrates that machine learning may be a viable way to improve upon current 

behavioral assessments, assess age groups that were previously too young to be assessed with 

behavioral exams, and lower healthcare costs by enabling early, accurate diagnoses. 
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